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2 Vu et al.

Virtual assistants have the potential to play an important role in helping users achieves different tasks. However, these systems face
challenges in their real-world usability, characterized by inefficiency and struggles in grasping user intentions. Leveraging recent
advances in Large Language Models (LLMs), we introduce GptVoiceTasker, a virtual assistant poised to enhance user experiences and
task efficiency on mobile devices. GptVoiceTasker excels at intelligently deciphering user commands and executing relevant device
interactions to streamline task completion. The system continually learns from historical user commands to automate subsequent
usages, further enhancing execution efficiency. Our experiments affirm GptVoiceTasker’s exceptional command interpretation
abilities and the precision of its task automation module. In our user study, GptVoiceTasker boosted task efficiency in real-world
scenarios by 34.85%, accompanied by positive participant feedback. We made GptVoiceTasker open-source, inviting further research
into LLMs utilization for diverse tasks through prompt engineering and leveraging user usage data to improve efficiency.

CCS Concepts: • Human-centered computing→ Interaction techniques; Smartphones; Natural language interfaces; Sound-
based input / output.
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1 INTRODUCTION

The advancements in voice control technology have sparked a new wave of innovation, driving the exploration of its
potential in transforming smartphone interactions [28, 29]. With the integration of voice control, users can effortlessly
navigate through various applications, compose messages, and even initiate tasks like checking the weather or playing a
video on YouTube [60]. This seamless and natural mode of interaction not only saves time but also promotes a hands-free
experience, allowing individuals to engage with their smartphones in situations where manual input operation is
impractical or inconvenient [39, 71] (see Fig. 1). Moreover, the success stories of widely recognized voice assistants like
Google Voice Assistant [5] and Siri [3] have further propelled the adoption of this technology, inspiring researchers
and developers to delve deeper into its capabilities and refine its usability for an even broader range of users. As
this field continues to evolve, the integration of voice control technology with smartphones holds immense potential
to revolutionize the way we interact with our devices, empowering users with enhanced accessibility and a more
convenient user experience.

Developing efficient and reliable voice-controlled systems involves addressing various challenges that significantly
impact the accuracy and usability of these systems [47]. One major hurdle is accurately comprehending user commands
and seamlessly mapping them to specific smartphone actions [51]. Achieving satisfactory accuracy levels often relies
on substantial training data, comprised of user voice commands, and complex deep learning models [36]. These
models are employed to decipher the semantic nuances of the commands, comprehend their intended meaning, and
subsequently select the appropriate user interface (UI) element on the screen for interaction. However, acquiring and
curating substantial datasets for training language models presents a laborious and time-consuming challenge, impeding
progress and scalability in developing virtual assistants. Moreover, the collected dataset may not comprehensively cover
the diverse commands required for modern applications with rich functionalities, potentially limiting the language
model’s capabilities. Additionally, the rapid advancement of technology constantly introduces new functionalities,
quickly rendering the existing dataset outdated, and these models often struggle with accommodating the interpreting
speech recognizer errors due to accents [59] and homophones [48]. The inherent complexity of these models hampers
their adaptability to the dynamic landscape of human natural language and pronunciation variations, making it
challenging to account for real-world usage scenarios’ intricacies and variations.
Manuscript submitted to ACM
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Furthermore, voice assistants often face performance issues when compared to physical touches on mobile devices [2].
Extensive research and development have explored various methods to enhance voice assistants’ capabilities. For
instance, Voicify [60] employs app analysis and deep linking techniques to speed up voice command processing. Modern
voice assistants also enhance user experience by personalizing interactions based on individual usage patterns and
preferences [12, 70]. This personalized learning approach holds tremendous potential in mitigating the performance
limitations of voice-controlled systems, enhancing efficiency, and accelerating user interactions [35, 51]. By continuously
learning from user interactions, voice assistants can improve their accuracy and reliability, ultimately ensuring efficiency
and overall user experience in real-world usage scenarios.

Large Language Models (LLMs) have revolutionized natural language processing (NLP), showcasing their general
intelligence and excellence in reading comprehension, trivia quizzes, translation, and text completion [9]. The concept
of Few-Shot Learning further enhances LLMs’ power by enabling them to adapt to new tasks with minimal examples or
prompts, eliminating the need for task-specificmodels and datasets [53]. This flexibility and efficiency in handling diverse
conversational interactions without extensive retraining present an innovative and promising approach. Leveraging
few-shot learning, developers can tap into the vast knowledge and language understanding capabilities of LLMs,
facilitating rapid development and deployment of language-based automation solutions in various domains [23, 44].
Therefore, we aim to investigate the potential of LLMs in enhancing the intuitiveness of voice control for mobile
applications.

This paper introduces GptVoiceTasker, a novel system that leverages LLMs to enhance voice control for Android
devices. Our system employs advanced prompt engineering techniques to ensure a precise understanding of user
commands without extensive model training. By bridging the gap between natural language commands and interactive
tasks on mobile devices, GptVoiceTasker facilitates seamless automation of daily physical interactions, including
scrolling, tapping, and inputting text, solely through voice commands. In addition, the system automatically records
and learns from user commands and in-app usages, enabling the reproduction of tasks for similar requests in the future
to improve task efficiency. GptVoiceTasker supports the sequential execution of multiple commands within a single
utterance, further enhancing the efficiency of voice interaction on mobile devices.

We validated the technical contributions of GptVoiceTasker by evaluating i) the ability to parse user commands into
executable actions and ii) the ability to streamline saved tasks. The command parser achieved over 90% accuracy on the
human command dataset collected from a user study. Our automated execution achieved 82.7% success rate for direct
match tasks and 72.0% success rate for tasks with different parameters. To validate the usability of GptVoiceTasker,
we conducted a user evaluation with 18 participants, each completing a set of tasks using GptVoiceTasker and two
state-of-the-art baselines. We collected the time taken to complete each task, as well as quantitative and quality feedback
from users. The results show that GptVoiceTasker accelerates the tasks by 34.85% and received positive feedback
regarding usability.

To summarize, the contributions of this paper include:

• Development of GptVoiceTasker, a voice assistant that harnesses the capabilities of LLMs to streamline the
automation of multi-step tasks by predicting the most optimal step on each individual screen.

• A graph-based local database design that automates the recording and retrieval of personal app usages, enhancing
task execution efficiency for virtual assistant interactions.

• Conducting a large-scale user evaluation to validate the effectiveness of our approach, along with empirical
findings on system limitations and considerations for voice assistant design.

Manuscript submitted to ACM
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• GptVoiceTasker1 is open-sourced so that anyone can use and continue to improve the system.

2 BACKGROUND & RELATEDWORKS

2.1 Voice Control & Assistants on Mobile Devices

In recent years, the progress in Natural Language Understanding (NLU) has fueled the proliferation of voice assistants
across diverse platforms, including ubiquitous systems [7, 32] and home appliances [52]. On personal smartphones,
numerous voice assistants have been proposed, leveraging intelligent NLU models to comprehend user speech input
and map it to user interface actions. An early milestone in smartphone voice control interfaces was JustSpeak, which
harnessed Google’s Automatic Speech Recognition (ASR) to record user commands and introduced innovative utterance
parsing techniques [71]. Subsequently, the Smart Voice Assistant expanded on JustSpeak’s capabilities by enabling users
to manage calls and SMS through voice commands [11]. A similar endeavor, the "VoiceNavigator" application byWeber et
al. in 2016, focused on enhancing the visibility and learnability of mobile voice user interface applications [18]. However,
these initial approaches, foundational as they were, encountered usability issues stemming from rigid language parsing
heuristics and limited use cases, which spurred the need for further development of smartphone virtual assistants.

In recent years, significant advancements in language parsing capabilities have been achieved through deep learning
models. SAVANT leveraged Dialogflow as a conversational agent to extract user intent from utterances [4], while
DoThisHere employed the pre-built Almond language model to enable voice control for retrieving and setting UI
contents in Android [69]. Google released Voice Access [1], aimed to replace manual interactions with voice command,
which has over 100 millions downloads on Google Play Store. More recently, Voicify [60] introduced VoicifyParser,
an advanced deep learning approach for parsing user commands into on-screen interactions, while AutoVCI [51]
concentrated on developing voice interfaces for automating mobile UI tasks. However, the interaction paradigm with
these existing approaches remains somewhat unnatural, requiring users to issue precise machine-like instructions, such
as “Press save button”. This limitation means that they may struggle to fully comprehend high-level user intentions, such
as “I want to save this note”. We propose GptVoiceTasker to address these challenges and revolutionise the voice-based
interactions between human and software systems. Our solution leverages the capabilities of LLMs to map high-level
user intentions to executable actions, enabling on-screen interactions through intention-based voice commands. This
approach seeks to accommodate the flexibility and natural language of human commands, ushering in a new era of
user-friendly assistive tools.

2.2 Large Language Models for Enhanced Human-AI Collaboration

The advent of generative AI has given rise to innovative LLMs, such as GPT-4 [50] and DALL-E [55]. These LLMs have
revolutionized the landscape of AI development by enabling developers to achieve complex tasks through few-shot
prompting, eliminating the need for extensive custom model training. Their remarkable versatility has spurred active
research in both IT and non-IT domains, spanning areas like software testing [24, 43], high-performance computing [15],
finance [65], and health science [25]. LLMs have particularly excelled in enhancing the intuitiveness of existing methods,
as seen in software testing, where they generate authentic text inputs based on the current UI page information,
replacing the conventional random text input approach [43]. This demonstrates the transformative potential of LLMs in
advancing research and innovation across a multitude of domains.

1https://github.com/vuminhduc796/GPTVoiceTasker
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The capabilities of LLMs have sparked a surge in their application within assistive technology, revolutionizing the
translation of user commands into executable tasks across diverse systems. Recent research in this domain has witnessed
the transformation of human natural language commands into various types of tasks, including visualization tasks [62],
operating system tasks [42], and robotic tasks [38, 57]. LLMs have enabled these systems to tackle more intricate
commands beyond the scope of existing heuristic approaches. They also exhibit a remarkable ability to comprehend
variations of commands that share similar intentions but are expressed differently. This pioneering framework, with the
support of LLMs, paves the way for a novel (semi)automated task execution paradigm, erasing the boundaries between
traditional command patterns and intuitive command modalities.

Within the domain of mobile assistants, LLMs have emerged as a transformative force, supplanting conventional
machine learning models as seen in prior related works [51, 60]. This paradigm shift simplifies the process of translating
user’s natural voice commands into actionable operations on mobile User Interfaces (UIs). Wang et al. [61] utilised LLMs
to allow conversation-alike interaction with mobile UIs, which demonstrates LLM’s better ability in understanding
on-screen elements compared with traditional machine learning approaches [37]. While Wang et al.’s approach in
smartphone virtual assistant development is noteworthy, its employed prompting strategy remains basic, impacting
its ability to parse natural user commands. Our work aims to elevate this approach by incorporating state-of-the-art
prompting strategies to enhance accuracy and create a more comprehensive smartphone virtual assistant. Unlike Wang
et al.’s focus on single on-screen actions, our research takes a step further. We strive to unlock the full potential of LLMs
in automating complex user requests involving multiple steps to achieve specific objectives, as exemplified in Fig. 1
with the query "Show me how to do the chest fly exercise". Our goal is to broaden the scope of LLMs, assisting users not
only in known tasks but also in accomplishing unfamiliar ones, all while significantly reducing the time required to
complete these tasks on a smartphone.

3 THE GPTVOICETASKER SYSTEM

We introduce GptVoiceTasker, a virtual assistant that empowers users to efficiently perform various tasks on their smart-
phones using voice commands. By applying different prompt engineering techniques (Section 3.1), GptVoiceTasker
harness the power of LLMs to perform different logical tasks. Upon receiving a user command, GptVoiceTasker first
attempts to automatically execute the task using the saved database (Section 3.3). Should a task prove unfeasible using
the pre-existing database, GptVoiceTasker will perform a series of step-by-step predictions of on-screen navigation to
complete a task (Section 3.2). Simultaneously, the system records these interactions for subsequent automated execution.

3.1 Prompt Engineering

While a naive approach to prompting LLMs for various tasks may yield suboptimal results due to low accuracy
and randomness in responses [17], we propose the adoption of different prompt engineering techniques. These
techniques involve crafting prompts according to specific rules and components to elicit optimal responses from
LLMs [41]. We created multiple prompt templates2, which is applied in both On-Screen Interaction (Section 3.2)
and Usage-based Execution (Section 3.3). In Fig. 2, we illustrate an example of our prompt designed to determine
the most appropriate target for tapping. This section explains different prompt engineering techniques applied in
GptVoiceTasker, showcasing their significance in harnessing LLMs for complex reasoning tasks across multiple
components in our system.

2https://github.com/vuminhduc796/GPTVoiceTasker/blob/main/prompts.txt
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6 Vu et al.

Fig. 2. An example of our prompt and response format to determine the most relevant target to press.

3.1.1 Least-to-most Prompting. In addressing complex tasks, such as predicting the action to perform on the screen
from the user command, GptVoiceTasker employs the Least-to-most Prompting strategy [72]. This technique involves
breaking down a complex task into smaller, manageable prompts. The goal is to enhance the model’s understanding
of the logical flow, thereby improving accuracy. For example, GptVoiceTasker implements a two-step prompting
approach for On-Screen Interactions (Section 3.2). First, the model is prompted to map user intent to a specific action
(e.g., tapping an element, entering text, scrolling). Subsequently, based on the determined action, subsequent prompts
are sent to identify the target UI element for executing that action (Fig. 2). This approach allows the LLMs to concentrate
on atomic tasks, contributing to improved accuracy compared to a naive approach of identifying both action and target
in the same prompt [61].

3.1.2 Few-shot Prompting. Few-shot prompts [13], incorporating completed task examples into the prompt (as in
Examplar 1 in Fig. 2) itself, empower LLMs like GPT to facilitate rapid comprehension of specific rules and guidelines,
thereby markedly improving output accuracy and reliability. For instance, when discerning the action in a user command,
we include exemplars with synonyms and homophones to enhance adaptability and address speech recognition
variations. This integration of few-shot learning, coupled with the LLM’s adept vocabulary and grammar comprehension,
boosts versatility across diverse scenarios. Importantly, it effectively rectifies terminology discrepancies, a common
issue in voice assistants using automatic speech recognition [10]. This advancement represents a notable improvement
over heuristic-based methods, especially in navigating linguistic intricacies.

3.1.3 Chain of Thought. When dealing with complex prompts that demand logical reasoning, LLMs often struggle to
fully interpret and deliver accurate output. To address this, we integrate “Chain of Thought” [64] into our few-shot
exemplars to help LLMs simulate human-like reasoning and provide logical output. By employing this mechanism, we
ensure consistent and coherent reasoning, enabling a seamless progression of ideas and actions in generated responses.
In GptVoiceTasker, the chain of thought is added to each response in examples where few-shot prompting is applied.
In few-shot exemplar 1, as depicted in Fig. 2, we provided a chain of thought to predict the most relevant UI element
Manuscript submitted to ACM
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to find the “video history in YouTube”. Despite the task requiring multiple steps to navigate to the history page, we
asked the LLM to identify key indicators and execute logical reasoning specific to the task. This enabled it to accurately
predict the most likely button for interaction. As a result, the system can repeat the same command, incorporate it into
the prompts, proceed with the predicted actions, and continue until it reaches the intended destination.

3.2 On-screen Interaction

Upon receiving a task from users, GptVoiceTasker will automatically perform multiple on-screen action executions
until the task is accomplished. We first collect run-time UI elements, execute reasoning tasks from user commands, and
perform actions on the user’s device. GptVoiceTasker continues to repeat this iterative process to perform each action
to accomplish the user tasks.

3.2.1 UI Semantic Extraction. To ensure a comprehensive understanding of the current UI elements and their semantics,
GptVoiceTasker utilises Android Accessibility Service to continuously capture UI and analyzes new changes in the
mobile screen, following previous research [60]. Note that the raw UI elements we extracted may be afflicted by UI
noise, which is a prevalent issue linked to the real-time gathering of UI elements [34]. This problem arises when the
collected UI information does not align with its visual representation, which affects the semantic understanding of
LLMs on current UI elements, resulting in incorrect interactions. To address this, we implement heuristics to mitigate
potential inaccuracies and ensure the reliability of collected UI information. First, we utilise the collected coordination
of each UI elements to eliminate out-of-bound or empty elements. We also eliminate views are fully overlapped by
other views, which does are invisible and not interactible. In addition, we remove those views that do not contain any
interprettable information, such as empty view containers.

Our primary emphasis is on representing mobile UI screens in a textual format that can be interpreted by Large Lan-
guage Models (LLMs) through text-based input. While recent research proposed the translation of XML representation
of UI screens to HTML format [24, 61] to overcome prompt length limitations, this approach becomes less relevant as
modern models relax restrictions on prompt length, allowing developers to present more information in a prompt. For
textual components like text fields and buttons, we gather essential semantic information from their labels and contents.
We collect alternative text and resource names for icons and images, which offers meaningful information as defined by
developers. Additionally, we augment the collected information with attributes such as the precise element location
on the screen and a more comprehensive view hierarchical structure, previously absent in HTML representations.
These details play a crucial role in illustrating relationships between UI elements, as demonstrated by the example
of delivery times for each restaurant in the UberEats app (Fig. 3). This capability proves valuable in accommodating
user commands, such as “Select the restaurant with the fastest delivery time”, a task unattainable with a flattened UI
representation approach. Furthermore, we can cater for commands that user references to UI elements by their locations,
such as “Press the icon at the top-right corner”. Lastly, each UI element is enriched with supported interaction types,
indicating potential actions like PRESS or ENTER_TEXT to support LLM propose the appropriate action.

To enhance the contextual understanding and reasoning capabilities of the LLM, we not only fetch on-screen data
but also retrieve relevant system-related information, including the app name and activity name of the current screen.
By incorporating these system-related details, GptVoiceTasker gains a comprehensive understanding of the user’s
current context, which further aids in validating each step in multi-step executions.

3.2.2 Action Executor. We combine the user command with UI and contextual information collected in previous step
and applies different prompt engineering techniques as described in Section 3.1 to create prompts. These prompts are
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then sent to LLMs, which will first detect most appropriate actions and then detects the associated target UI element
for this action. GptVoiceTasker uses this information to perform the interactions on user’s device, such as tapping,
scrolling, or entering text on certain UI element. Prior mobile automation approaches [51] encounter challenges in
handling runtime UI changes and app updates that might alter UI representations and operation sequences. In contrast,
our approach exhibits robustness in the face of such issues, as the sequence of steps is dynamically dependent on
the UI on the screen. This adaptability allows GptVoiceTasker to navigate through dynamic UI changes and updates,
ensuring reliability in task automation on smartphones. Additionally, GptVoiceTasker provides audio feedback to
users, confirming that the system is automatically proceeding to the next command. This real-time feedback ensures a
smooth and intuitive user experience with GptVoiceTasker’s interaction capabilities.

To address challenges inherent in automation within real-time systems, including the detection of failures in each
automated step [66], our implementation integrates a screen transition detector. This detector utilizes the Hamming
distance [31] to gauge the difference between two screens, ensuring that the UI accurately reflects changes resulting
from the automated action. Moreover, for validating the success of actions, we implement additional heuristics. For
example, in scenarios involving ENTER_TEXT, we verify the presence of the entered text in the target text box. If
an action proves inexecutable (i.e., not inducing appropriate changes to the UI), we iteratively repeat the step with
supplementary information about the failed action, thereby excluding these actions from the selection.

Another challenge in mobile app automation arises from the prevalent dependency of mobile UI screens on live
internet content, often loaded asynchronously after the screen appears on smartphones. The collection and utilization
of incomplete or loading UIs can compromise the accuracy of detecting suitable actions. In response, GptVoiceTasker
introduces an innovative approach by delaying subsequent actions until the screen is fully loaded. This is achieved
by detecting screen-loading widgets in Android, leveraging information such as widget names, types, and shapes to
detect progress bars and loading indicators. Furthermore, we enhance our approach by collecting data on network
transmissions to identify ongoing content downloading tasks, inspired by the methodology presented in [40], which
leverages network analysis for detecting ads. These methods significantly enhance the reliability of GptVoiceTasker
in effectively navigating through the app’s interface.

3.3 Usage-based Execution

In mobile apps, the UI elements on a specific app page are predefined by developers when developing an app page.
Therefore, the series of user interactions on the screen to achieve a task will be consistent across different times. Based
on this matter, GptVoiceTasker automatically create a saved path for each user command, allowing GptVoiceTasker
to replicate interactions when receiving a similar command from users. Unlike previous approaches [35, 51] that depend
on a manual task creation process for automation support, GptVoiceTasker automatically records app transitions
through on-screen navigation in Section 3.2. This automated process not only allow wider coverage of automated tasks
but also eliminates the need for manual efforts in predefining shortcut tasks. In this section, we outline our method
(as in Fig. 3) to streamline subsequent similar tasks from users, which combines both LLMs-based and heuristic-based
modules. We introduce our database design in Section 3.3.1. First, we identify the current UI screen displays on user
device and the destination screen (Section 3.3.2). After that, we find the most viable path from current screen to the
destination screen (Section 3.3.3). Finally, we use incorporate human interactive feedback to validate and finetune the
execution for further usages (Section 3.3.4).

Manuscript submitted to ACM



GPTVoiceTasker: LLM-Powered Virtual Assistant for Smartphone 9

Fig. 3. An example use case in Uber Eats to how GptVoiceTasker use the historical tasks to execute user new command.

3.3.1 Transition Graph. In line with previous approaches to automating tasks in mobile apps [16], GptVoiceTasker
incorporates a directed graph for each app to facilitate seamless transitions between different app pages. Each node in
the database corresponds to a UI page in the app, containing a unique ID and a screen description generated as outlined
in Section 3.3.2. Moreover, for each node, we maintain a list of previously used commands by users that concluded
on this page. This compilation signifies that the requested functionality from these user commands is associated with
this specific app page. The directed edges between nodes represent potential transitions from one UI page to another,
capturing information about the associated action type and the target UI element for the transition. These edge details
empower GptVoiceTasker to replicate user actions and screen traversals. As users engage with the app, this graph
dynamically expands, automatically incorporating new UI pages and associated transitions.

3.3.2 Screen Description & Command Pattern Matching. While previous automation approaches focus on executing
tasks starting from the launcher page of the app [4, 51], they may not be suitable for cases where users are currently on
other pages, necessitating additional navigation steps to return to the launcher page. To address this challenge, we first
identify the current screen of the app that the user is viewing in our graph database. However, heuristically comparing
and identifying a UI page using the on-screen textual information collected from the XML representation proves
impractical due to the contextual dynamicity of information within UI elements on a specific app page. For example,
consider the search result page in the Uber Eats app, where distinct restaurants are displayed for “spaghetti” and “sushi”

search results. Despite featuring different content, these pages share the same layout and, therefore, should be identified
as the same node in our graph database. To achieve this, we leverage the capabilities of LLMs to semantically summarize
the UI content [61] into a semi-structured description. We collect content from the XML hierarchical representation of
the screen, along with additional context about the current activity and app name, to generate a high-level description
of the overall functionality that the screen serves. Subsequently, GptVoiceTasker summarizes the list of interactive
elements, including clickable, scrollable, and text-editable elements, and appends them to the description. To locate the
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current UI page within the list of visited screens in an app, we prompt LLMs to perform semantic matching between
the current screen description and the saved list of screen descriptions from the app. This process allows us to trace
back the ID of the screen in the graph database, effectively addressing the navigation challenges from any point within
the app.

After identifying the current screen, we perform semantic matching to find destination screen. We define destination
screen as the most relevant screen that can serve user request, for example, the destination screen for user command “I

want to order spaghetti” is the search result page for the keyword “spaghetti”. We utilise the user saved commands and
screen description for each app page to prompt LLMs to determine the most relevant app page from the app. We build a
prompt that includes user request and the list of saved screen in the app to rank the relevancy of each app screen with
the request that user made.

3.3.3 Path Finding & Execution. After identifying the current and destination pages within the saved graph database,
GptVoiceTasker utilizes the Shortest Path algorithm [26] to determine the sequence of actions required to navigate
from the start to the destination node. GptVoiceTasker extracts this sequence from the edges connecting the start
node to the destination node and executes each action in sequence using the Action Executor described in Section 3.2.2.

Given the dynamic nature of smartphone GUIs, where the relative coordinates of buttons may vary, especially in
scrollable screens or due to unexpected pop-ups and ads, execution validation is crucial. To address this, GptVoiceTasker
performs validation on each UI page in the path, ensuring the automation follows the expected sequence. After each
action in the sequence, the screen description is generated based on current displayed UI (as explained in Section 3.3.2)
and compared to the expected description stored in the graph node representing the anticipated UI. If the descriptions
do not match, the tool navigates back to the previous app page and prompts LLMs to propose an action. The prompt
created for on-screen action predictions is then used to feed the action to the LLM, regenerating the appropriate action.
This iterative process ensures that the automation adapts to changes in the smartphone GUI, allowing GptVoiceTasker
to dynamically execute actions based on real-time screen information.

Additionally, GptVoiceTasker leverages command parameterization techniques [33, 51], allowing saved paths to
be reused for similar tasks with different parameters. Utilising the enriched vocabulary and robust natural language
understanding capabilities of the LLM, GptVoiceTasker prompts the LLM to function as an advanced Named Entity
Recognition (NER) system. This system identifies and replaces all occurrences of substitutable words with new keywords
in the action sequence. For example, in the Uber Eats app scenario shown in Fig. 3, where a user has a saved command
for “I want to order some sushi”, GptVoiceTasker recognizes “sushi” as a parameter value representing the type of food,
which is replaced by “spaghetti”, transforming the command from ENTER “sushi” to ENTER “spaghetti”. Subsequently,
GptVoiceTasker executes this adapted sequence of actions to accomplish the task.

3.3.4 Human Feedback Loop. The saved commands have proven their applicability in subsequent user interactions
with the device, yet certain inconsistencies may arise due to app version updates and dynamic changes in UI element
availability. To address error handling and corrections, GptVoiceTasker incorporates human feedback to enhance the
saved data for each task. The automated tasks performed by the tool allow users to efficiently reverse actions and prompt
the system to actively adjust the new execution path to accomplish tasks effectively. This valuable information is stored
and fed back to the LLM, resulting in improved output for future executions. When users express satisfaction with the
result and request the next task, we also increase the confidence score for this saved path, helping GptVoiceTasker to
select the most reliable path to execute if multiple execution paths are found. In addition, we also provide an additional
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interface for users to amend saved commands manually. Through user feedback and iterative learning, GptVoiceTasker
continuously refines its performance, ensuring increasingly accurate and effective responses over time.

3.4 Implementation

We implemented GptVoiceTasker as anAndroid applicationwith the Accessibility Service in Android OS using Java [21].
Within the Java code, GptVoiceTasker subscribes to the typeWindowContentChanged accessibility events [21] to receive
notifications whenever UI changes occur on the screen. We created a dynamic pipeline to extract UI elements in a
hierarchical structure from AccessibilityNodeInfo objects [20], which serve as data representations of on-screen UI
elements provided by Android Accessibility Service. In addition, We obtain the app name and the activity name using
the Android PackageManager class.

To communicate with the LLM, we utilised the API service provided by OpenAI. We chose the GPT-4 model, as it is the
latest model trained by OpenAI [49]. Once we receive a response from the LLM, the tool leverages the performAction()

method [20] to execute actions on the corresponding elements. All data related to personalized services, such as screen
description and the transition graph, are stored in the phone memory for future usage.

4 TECHNICAL EVALUATION

To evaluate the effectiveness and reliability of the proposed system, we conducted two experiments on our command
interpreting module and usage-based execution. Specifically, we first assess the system’s ability to comprehend user
commands and perform on-screen interactions, comparing its performance to other state-of-the-art approaches. We
then investigate the system’s capability to execute multi-step tasks based on the saved user usages. .

4.1 On-screen Interaction Evaluation

4.1.1 Experiment Setup & Metric. Datasets:We collect a specialised test set to evaluate our system’s capabilities in
understanding natural language commands and mapping them to appropriate actions and target UI elements. This
dataset comprises 278 natural language user commands to interact with Android UIs.

Although prior research [14, 60] has produced a similar test set, it is not directly adaptable to our context for two
critical reasons. First, some instances in the test set are artificially synthesized based on predetermined heuristic rules.
The resulting natural language commands are linguistically biased toward simpler linguistic patterns and do not align
with the complex linguistic variants inherent in real-world human spoken utterances. Second, some test examples in
the existing dataset have become obsolete or are no longer replicable due to updates in the corresponding applications.

To construct a test set that more closely aligns with real-world user interactions, we adopted a data-driven approach.
We engaged 31 participants (17 females, 14 males), with 4 individuals having never utilized voice assistants before, 4
using them 3-4 times a week, 6 using them daily, and 17 using them less than 3-4 times a week. All participants are
work professionals and the rest from university community who use smartphones daily. We provided these participants
with screenshots alongside a specific task to accomplish. We then recorded the verbal commands they issued to their
mobile device to complete the given task. After the collection, we annotated the commands to specify the intended
action and target UI elements within the Android system; here, the term action refers to executable functions, while
target denotes specific UI components or elements on the current screen. As a result, we collected 278 natural user
commands for the dataset.

Metrics: Similar to Vu et al. [60], we adopt three evaluation metrics, namely Exact Match Accuracy (EM), Target F1
and Action F1. EM calculates the percentage of instances in the test set where the predicted sequence exactly matches
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its corresponding ground-truth sequence. The measures Target F1 and Action F1 quantify the average micro F1 score
for the target (i.e., the UI components to be interacted with) and the action (i.e., the actions to be performed on the UI
components), respectively. The F1 score for each instance is computed using the formula:

F1 =
2 × |pred ∩ gold|
|pred| + |gold|

where |pred| represents the size of the set of predicted targets or actions, and |gold| denotes the size of the set of
ground-truth targets or actions. The average micro F1 score is calculated across all instances for either targets or actions.

Baselines: We consider four baselines for converting natural language into semantic meaning representations,
which comprise actions and targets. These baselines are vanilla Seq2Seq [6], BERT-LSTM [67], Voicify Parser [60],
and Wang et al.’s work [61]. In the original work by Voicify, all three baselines employ deep learning models trained
on datasets synthesized using the Overnight method [63]. This method generates training sets based on predefined lists
of actions and targets that are designed for evaluation scenarios in Voicify. To ensure a fair comparison, we modified
these lists to include the actions and targets present in our test dataset. We then re-synthesize the training set, which
includes 1,384 instances, using the Overnight method, adhering to the implementation outlined in Voicify’s work. Wang
et al.’s work [61] was the first to incorporate LLMs for interacting with mobile interfaces. We incorporated the 2-shots
LLM prompts they demonstrated in the paper for mapping instruction to UI actions. Additionally, we have enhanced
their model by integrating the more advanced GPT-4, which also inline with the one we used in GptVoiceTasker.

4.1.2 Evaluation Result. Table 1 presents the results of our technical experiments. Overall, GptVoiceTasker signifi-
cantly outperforms all baseline models across all metrics, achieving an 84.7% EM accuracy, a 91.7% Action F1 score, and
a 84.7% Target F1 score. Among the baselines without the LLMs, the Voicify Parser performs the best, aligning with the
results reported in its original paper [60]. However, its performance suffers when faced with linguistic variations in our
new test set. For instance, while the command “back” is correctly interpreted as “( PRESS , back )”, the phrase “return
to last page”, which represents the same command, is incorrectly parsed as “( SWIPE , DOWN )”. Both BERT-LSTM
and Seq2Seq models encounter similar issues, largely because they share architectural and training similarities with
the Voicify Parser, yet perform even worse due to Voicify Parser being specifically optimized for task completion on
Android systems. The method by Wang et al. [61] demonstrates the highest capability among the baselines, courtesy of
the LLM’s intervention, effectively rectifying the errors previously noted. However, the lack of the chain-of-thought
and least-to-most prompt techniques occasionally leads to inaccuracies. This is evident in instances where the system
misinterprets the intended direction in commands, such as confusing "DOWN" with "UP," or when it cannot adequately
differentiate between actions like "PRESS," "ENTER," or "OPEN" when various verbs are employed in the commands.

Benefiting from the integration of LLM and the prompting techniques, our GptVoiceTasker excels at handling
linguistic variants, consistently deriving the intended action and target regardless of variations in the input. The Action
F1 score for GptVoiceTasker reaches 91.7, indicating its enhanced ability to predict actions across various linguistic
patterns. Moreover, we observed that LLM effectively learns the true associations between actions and targets, thereby
excelling at target prediction as well. For instance, PRESS is exclusively predicted with UI buttons, ENTER_TEXT
is linked solely with text input fields, and OPEN corresponds to app names. In contrast, the baselines often learns
incorrect associations and outputs wrong target predictions. Our experimental results demonstrate that GptVoiceTasker
possesses superior capabilities for understanding and accurately processing various linguistic variations, highlighting
its adaptability in real-world scenarios.
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Table 1. The experiment results of different baselines compared with GptVoiceTasker in three metrics.

Models EM Accuracy (%) Action F1 (%) Target F1 (%)

Seq2Seq 25.2 47.6 35.6
BERT-LSTM 41.4 59.7 57.3
VoicifyParser 47.5 64.0 58.8

Wang et al. [61] 79.9 85.4 83.4
GptVoiceTasker 84.7 91.7 84.7

4.2 Database Execution Evaluation

Table 2. Saved task execution evaluation result for direct match tasks and parameterised tasks across 5 categories.

Category Average Number of Automated Steps Success Rate (%)
Direct Match Parameterised

Message Friends 4.33 93.33 86.67
Listen to Music 5.27 80.00 73.33
Set an Alarm 5.73 73.33 53.33
Check Weather 5.07 80.00 73.33

Get Directions & Map 5.53 86.67 73.33
Average 5.19 82.67 72.00

4.2.1 Experimental Setup & Metric. In this experiment, we assessed GptVoiceTasker’s ability to automate tasks using
the usage-based execution module. We initially identified the five common smartphone application categories, as shown
in previous study [4]. Within each application category, we randomly selected five popular applications from the Google
Play Store, with downloads ranging from 1 million to over 1 billion. For each selected app, we identified three features
introduced by the developers in their Play Store descriptions. Each feature was then used to create both a direct match
task, involving a straightforward match between user commands and corresponding app actions, and a parameterized
task, requiring GptVoiceTasker to perform keyword substitutions to complete the task successfully, as shown in
Section 3.3.3. For creating the direct match test cases, we paraphrased each saved command using state-of-the-art
paraphrasing tool Quillbot3, as in [56]. In the case of parameterized tasks, we substituted one entity in the paraphrased
command with another entity that has similar semantic. For example, consider the saved task “Get directions to the
nearest supermarket”. In this case, the direct matching task would be “Find the nearest supermarket’s location”, while the
parameterized task would involve substituting “restaurant” for “supermarket”, resulting in “Find the nearest restaurant’s
location”. This process resulted in a total of five app categories, each category contains 15 direct match tasks and 15
parameterised tasks. These tasks involve 4 to 7 steps, with an average of 5.19 steps per task as illustrated in Table 2. All
tasks can be automated with one voice command with the saved user app usage patterns. For a detailed list of the apps
and features used in the experiment, please refer to our GitHub repository4.

To populate the transition graph and store screen descriptions, we manually navigated through each screen in
every application using GptVoiceTasker. Subsequently, we configured the saved commands to reach the respective
screens as the ground truth. We used the success rate as the primary metric, each test case is marked as success if
GptVoiceTasker can successfully opened the desired feature using a single command.
3https://quillbot.com/
4https://github.com/vuminhduc796/GPTVoiceTasker
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4.2.2 Results. Table 2 illustrates the accuracy of our saved task execution modules. Our findings indicate that
GptVoiceTasker achieved an impressive level of automation, successfully handling 82.7% of exact match tasks and
72.0% of parameterized tasks. Notably, GptVoiceTasker exhibited exceptional performance in tasks related to messag-
ing and directions & maps applications. This success can be attributed to the relatively static nature of these apps, where
user interfaces maintain a consistent structure. Our results underscore GptVoiceTasker’s proficiency in command
analysis, semantic matching to saved tasks, and parameterized phrase substitution within these contexts. However, the
accuracy of GptVoiceTasker diminished when confronted with tasks related to setting alarms. To better understand
the root causes of this decline in performance, we conducted an error analysis on the failed test cases. Several key
issues emerged:

Complex Parameterized Tasks: For parameterized tasks with additional steps, such as setting an alarm for 7:30 instead
of 7:00, GptVoiceTasker struggled due to the extra step involved in selecting the minutes, which was on a separate UI
element. Further works include making GptVoiceTasker adaptable to these additional steps in the automation process.

Pop-ups Ads and Unusual UI Elements: Certain applications presented pop-ups ads and unusual UI elements in run
time that were not encountered during the initial task-saving process. Consequently, GptVoiceTasker faced difficulties
in completing these tasks. To improve the robustness of our approach, we recommend exploring the integration of a
deep learning model to detect and handle such ad widgets and unusual UI elements, as in [22, 40].

5 USER STUDY

To demonstrate the practical utility of our tool, we conducted a user study to evaluate the holistic performance of
the GptVoiceTasker system within real-world scenarios. Our evaluation involved a comparative analysis against two
baseline systems: 1) Voice Access [68], the official voice assistant product developed by Google, with over 100 million
downloads, and 2) Voicify [60], the state-of-the-art research product endeavor incorporating deep learning models to
enhance command comprehension. This study pursued a threefold objective: i) establish a performance benchmark
for user interactions utilizing the GptVoiceTasker system as opposed to the aforementioned baseline systems, ii)
juxtapose user feedback concerning the cognitive load and overall usability of the GptVoiceTasker system against the
baselines and iii) capture qualitative insights from participants, thus enabling the identification of potential avenues for
enhancing the GptVoiceTasker system. In order to achieve these objectives, we recorded the task completion times
for tasks undertaken using both the GptVoiceTasker system and the baselines. Furthermore, a comprehensive post-
experiment interview was conducted with each participant, facilitating the collection and analysis of both quantitative
and qualitative feedback.

Table 3. The list of tasks for user evaluation.

No. Task #Steps App Name #Downloads
1 Check the weather within a particular city. 6 BOMWeather 1M+
2 Search for a specific song and play it. 6 Apple Music 100M+
3 Create a note and write "Hello world" and delete it. 8 Notes 1M+
4 Check for an unread message, reply with a mes-

sage and delete the conversation.
8 Messages 1B+

5 Search for a pizza store, and complete the order. 10 Uber Eats 100M+
6 Create a new alarm and save it. 10 Challenges Alarm Clock 1M+
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Table 4. Average number of automated steps by all participants in each task.

Average Task 1 Task 2 Task 3 Task 4 Task 5 Task 6
#Steps Automated 2.22 2.67 2.00 1.67 2.17 2.50 2.33

5.1 Tasks

We designed 6 experimental tasks, encompassing a broad spectrum of the most common interactions performed on
the screen, ranging from tapping and swiping to entering text. Each task was structured to comprise between 6 to 10
sequential steps. The detailed list of these tasks is outlined in Table 3.

5.2 Participants

We recruited 18 participants, consisting of 10 males and 8 females, aged between 18 and 31 years old for our study. 8
participants are native English speaker while all other participants are proficient in English. All participants possess
a commendable level of familiarity with technological devices and actively use smartphones in their daily routines.
While participants exhibited exposure to virtual assistants like Siri or Google Assistant, none were acquainted with
utilizing assistive tools for smartphone control via voice commands. Specifically, none of the participants had prior
experience with any of the experimental tools employed in our study. This participant selection was deliberate, as our
study sought to gauge the learnability aspect of the experimental tools. Each participant received a USD $30 gift card
for the participation.

5.3 Procedure

We conducted face-to-face user evaluations using an Android device as the experimental tool. On this device, we had
the graph of each experimental app populated, which include the majority of app pages and navigation within the
app. At the start of the sessions, participants were introduced to all experimental tools via demonstrative videos. The
preliminary phase involved practicing basic tasks across all tools, enhancing participants’ familiarity with step-by-step
instructions and informative walk-through videos. We also use the searching for exercise tasks in Fig. 1 as the practice
tasks, allowing users to achieve this task using each of the tool.

After that, participants independently executed six distinct tasks with no experimenter intervention. Each tool was
employed for the completion of two tasks, and participants remained unaware of which tool was developed by us.
To mitigate any potential biases, the order of tasks and the tools used were systematically counterbalanced for each
participant [19].

We applied a time cap of 60 seconds per step. We recorded the time taken to fulfil each task, including the cut-off
time to perform quantitative analysis. We collected 108 data entries since each of the 18 participants has finished 6
tasks. In the end, using the System Usability Scale (SUS) [8] form with a 5-point Likert scale, we evaluate the usability
of GptVoiceTasker, compared to Voice Access and Voicify. In addition, we investigated the cognitive load when
experimenting with each tool using the NASA-TLX [27] form with a 7-point Likert scale. Lastly, we collected qualitative
feedback on which part they liked the most about GptVoiceTasker and what might improve the system.

5.4 Result

5.4.1 Overall User Performance. In Fig. 4, we present the average task completion times for each experimental tool. Our
GptVoiceTasker stands out with an average completion time of 92.5 seconds, significantly surpassing Voice Access
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Fig. 4. The average time taken to complete each task using GptVoiceTasker and the baselines in seconds.

(162.2 seconds) and Voicify (141.9 seconds). This substantial improvement in GptVoiceTasker’s performance can be
attributed to two primary factors. Firstly, GptVoiceTasker is better at comprehending user intentions and mapping
user commands to the correct actions on specific UI elements, regardless of the command format. In contrast, baseline
tools often demand specific command formats, introducing errors in various usages. This issue caused extra time costs as
participants needed to seek different ways to express their intentions with the baseline tools. For example, participants
tried to tap the option button, in the Notes app with Voice Access by multiple attempts such as “press on the option

button”, “press the three-dot icons”, “tap icon for options” before successfully give the right command “tap option”. Secondly,
GptVoiceTasker optimizes the performance by automating several steps in one user command, as shown in Table 4.
On average, the participants saved 2.2 steps across all six tasks. For instance, in Task 2, GptVoiceTasker efficiently
automated the process of searching for Love Yourself song (as in Fig. 5(B)), drawing from a previously stored action
designed for searching other songs. This eliminated the need for three steps required for in-app navigation. However,
some participants did not realize that they could easily trigger the saved tasks, leading to a missed opportunity for a
significant performance boost. In addition, GptVoiceTasker relates to network latency when sending and receiving
data from the LLMs API endpoint. This issue could be mitigated with a better network connection.

5.4.2 Cognitive Load & Usability Ratings. Fig. 5(A) presents an overview of participant feedback regarding their
cognitive load levels for each system, assessed using the NASA-TLX form. We conducted a one-way ANOVA statistical
analysis, confirming that GptVoiceTasker significantly enhances user performance while reducing frustration levels
(p < 0.001). Participants reported decreased mental demand, temporal demand, and effort when using GptVoiceTasker
in comparison to the baseline systems. This result signifies a substantial improvement in GptVoiceTasker’s ability to
reduce the cognitive load required for operation, aligning with our design goal.

To assess GptVoiceTasker’s usability in comparison to the baseline systems, we employed a one-way ANOVA
statistical analysis on collected System Usability Scale (SUS) scores, as depicted in Fig. 6. The analysis verified the
enhanced usability of the voice control system, with GptVoiceTasker achieving an average SUS score of 79.861,
surpassing Voicify (47.917) and Voice Access (36.528). Participants found GptVoiceTasker easy to use (p < 0.001) and
well-integrated (p < 0.001), leading to increased confidence levels (p < 0.001). This remarkable outcome can be attributed
to GptVoiceTasker’s ability to effortlessly comprehend natural human commands, reducing the need for extensive
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Fig. 5. The comparison between GptVoiceTasker, Voicify, and Voice Access for A) the average cognitive load when using NASA-TLX
form (lower is better) *: p < 0.01, **: p < 0.001 and B) Task 2 from the user evaluation with GptVoiceTasker and other baselines.

Fig. 6. The comparison between GptVoiceTasker, Voicify, and Voice Access for the System Usability Scale (SUS). *: p < 0.01, **: p <
0.001.

training and practice. The lower likelihood of misinterpreting user commands also contributed to the positive results.
compared to the baselines, indicating its quick learnability and user satisfaction, thus promoting frequent usage.

5.4.3 Qualitative Feedback. In this section, we collate qualitative feedback from participants after the experiment.
Overall, the participants are satisfied with the tool, as well as providing suggestions for further improvements.

Ability to precisely interpret and execute human command. Participants expressed enthusiasm about the remarkable
ability of GptVoiceTasker to interpret human commands naturally, enhancing the overall system’s intuitiveness.
P1 and P12 highlighted that they could issue commands “in their preferred manner” and “converse naturally” with
GptVoiceTasker. This addresses cognitive overload concerns, as P4 appreciated the “stress-free experience”, and P6 and
P7 found GptVoiceTaskermore “comfortable to use”. For instance, when adding a new note, users could simply say “add
a new note” to prompt GptVoiceTasker to press the add button on the screen. Moreover, participants were impressed
by our tool’s accuracy in handling user input errors. P3 noted their satisfaction with how GptVoiceTasker “can still

execute the correct action even when I make mistakes in my commands”. Both P4 and P17 highlighted the tool’s usefulness
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in daily tasks, as it eliminates the need to “exercise caution and stay alert” when interacting with GptVoiceTasker. These
feedback remarks strongly affirm the practicality of our approach in real-world task scenarios. In contrast, traditional
approaches typically demand fixed input formats, making them ill-suited for real-world scenarios where user input can
vary significantly.

Automated execution helps accelerate tasks and improve user experiences. Participants offered positive feedback
regarding the use of saved task automation, highlighting its significant impact on efficiency and user experiences. P11
mentioned that this feature is “accelerating the tasks” while P13 emphasized the potential utility of GptVoiceTasker
during physical activities, stating it would be “really useful when I work out”. P5 appreciated this feature, describing it as
“perfect for voice-interacting tools”, as it mitigates the inherent challenges of voice command interactions. Additionally, P18
praised the feature, noting that tasks became “fairly easy” with its implementation, indicating significant performance
improvements. This, combined with the advanced capability to understand user intentions, enhances the intuitiveness
of voice-based interfaces. When using a smartphone, users often have a specific task in mind, such as setting an
alarm or checking the news. Unlike other approaches that require users to perform additional steps to translate their
intention into executable commands that a voice interface can understand and execute, GptVoiceTasker can directly
execute these tasks without causing additional mental stress. However, users also provided valuable suggestions for
enhancement. They expressed the desire for GptVoiceTasker to suggest executable saved tasks and display a list of
saved tasks. Furthermore, participants suggested improving the introduction of this feature, as P4 noted it was “not
familiar at first”, and P6 emphasized the need for “better introduction.” These insights underscore opportunities to refine
the feature’s usability and user onboarding, ultimately enhancing overall user satisfaction.

Suggestions for enhancing user experience. Participants provided valuable suggestions for improving the intuitiveness
of GptVoiceTasker. Regarding UI design, P14 recommended the inclusion of a “live transcription” feature to display
recognized voice commands. This would help users confirm that their commands were correctly received and make
necessary adjustments if needed. Furthermore, P1 and P15 suggested incorporating a “loading indicator” to signify
ongoing executions, addressing latency issues caused by execution delays. In terms of functionality, P7 proposed
displaying a list of available tasks as suggestions, enhancing user interaction. Additionally, P15 discussed the potential
for an interface that allows users to modify saved tasks, providing greater customization. Lastly, participants P7 and
P12 suggested making the audio feedback from GptVoiceTasker clearer. These suggestions hold significant value for
GptVoiceTasker’s continuous improvement, aiming to deliver a more seamless user experience.

6 DISCUSSION

We introduced GptVoiceTasker as a pioneering example of leveraging LLMs in the development of speech-based
virtual assistants. In this section, we delve into the implications and limitations of GptVoiceTasker.

Towards widespread adoption of the voice-centric interface.Advancements in natural language understanding, LLMs like
GPT and Bard [54], have catalyzed the shift towards voice-centric interfaces, extending their use beyond smartphones to
wearable devices like smartwatches and AR-VR head-mounted displays. These interfaces not only seamlessly integrate
software into daily life but also significantly enhance accessibility for users with visual impairments [71]. However,
visual-manual methods such as tapping on smartphones or mouse-clicking in desktops have been preferred for their
speed and accuracy. Therefore, the transition from the dominant visual-manual interaction to a voice-driven approach
presents challenges, stemming not only from the fundamental differences between these interaction modes but also from
user unfamiliarity with voice-based interactions. Our tool overcomes this by using LLMs to enhance the intuitiveness
of voice interactions. This allows for more intelligent mapping of user intentions to visual elements, easing the shift to
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voice-assisted interactions and suggesting wider adoption of voice-centric interfaces. Despite the promise, challenges
such as the effectiveness of voice recognition in diverse environments still persist. Addressing these will be crucial for
the broader adoption of voice-centric interfaces, like smart homes and healthcare. This transition, while challenging,
opens new avenues for user interaction and emphasizes the need for continued research in the HCI domain.

LLMs for task automation on user visual interfaces. Research has highlighted the capability of LLMs to provide
reasoning based on the UI layout, applying to task automation and testing tools [24]. These models show remarkable
capabilities in incorporating extensive knowledge concerning prevalent app design principles and recognizing standard
mobile interface elements, including the toolbar, navigation drawer, and bottom navigation bar [44] to significantly
enhance proficiency in facilitating precise in-app navigation. Our study highlighted the vital role of spatial information
and hierarchical UI representations for LLMs in comprehending semantic connections between diverse UI elements,
particularly useful for elements lacking textual information like unlabeled icons or images. In our user study, when
tasked with deleting a message lacking a visible delete button, LLM intelligently suggested initiating the process by
pressing the unlabelled icon button at the top right, typically the location of the option button, and then selecting
“delete” from the ensuing options list. The core of this research lies in the transformation of visual interfaces into
textual descriptions that LLMs can process, a critical step for enabling effective task execution based on user inputs.
Future research should address the models’ limitations in unconventional UI scenarios and focus on expanding their
adaptability across varied interface designs and complex user tasks. Such progress in LLM capabilities is pivotal for
advancing user interface automation, leading to more user-friendly and efficient digital experiences.

Towards responsible AI in software systems. In recent years, the remarkable advancements in LLMs have enabled
the seamless integration of AI into various software and systems, with the flexibility for fine-tuning and few-shot
learning to tackle diverse and challenging downstream tasks. However, this integration raises significant concerns,
particularly regarding data privacy and security [58]. The very nature of AI-integrated systems requires access to data,
potentially putting sensitive or confidential information at risk. Put in the context of voice assistants on smartphones,
users are sceptical as smartphones contain many personal and sensitive data [30]. Tools like GptVoiceTasker can read
such on-screen data and further process them to LLMs. To mitigate these risks, several essential measures must be
implemented to not only protect users but also build trust, fostering greater adoption of AI-based user interactive
systems. First, data de-identification techniques [45] should be applied for on-screen sensitive data, especially for user
information such as passwords and personal details. This can be set up prior to usage by the user to hide specific
keywords or terms or be detected in real-time using heuristics and deep learning models [46]. Furthermore, transparent
user consent mechanisms are crucial to informing individuals about data access, usage, and purposes, ensuring they
maintain control over their information. Users should have the ability to grant, deny, or adjust permissions as needed
to protect their privacy within AI-integrated systems.

Limitations. The current approach poses several limitations. Firstly, the usage-based execution relies prior usage in
the particular application, therefore it is inapplicable to unused apps. To address this challenge, our future work aims to
develop a more generalized approach to application usage, categorizing apps by their primary functions. For instance,
we could devise a standardized set of steps for searching and playing a song that could be applicable across various
music applications, thereby simplifying the process for new and unfamiliar apps. Secondly, while our system shows
proficiency on Android smartphones, its effectiveness on other Android-based devices remains untested. As previously
indicated, there’s potential to extend this voice-centric interface to a broader range of gadgets, including smartwatches
and AR-VR head-mounted displays. Although the vocal commands might be processed by LLMs across devices, the user
interfaces (UIs) of these devices can vary significantly in their logic and layout. For instance, the streamlined interface
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of a smartwatch might necessitate more concise output due to its smaller screen, while the immersive environment
of an AR-VR device could introduce new interaction paradigms. This diversity in UI design and interaction methods
across different devices requires more investigations in future works.

7 CONCLUSION

In this paper, we introduce GptVoiceTasker, an innovative virtual assistant designed to enhance user interactions and
performance on smartphones. GptVoiceTasker leveraged advanced prompt engineering techniques to harness the
capabilities of Large Language Models for interpreting user commands and constructing logical reasoning components.
GptVoiceTasker further streamlined user interactions by automatically storing previous usages to automate subsequent
repetitive tasks. Our experiments demonstrated outstanding command interpretation accuracy and the effectiveness
of automated execution based on historical usage. In addition, the user evaluation validated GptVoiceTasker’s high
usability in real-world tasks by improving user performance and reducing mental stress load, aligning with our design
objectives. As an open-source project, GptVoiceTasker paves the way for future enhancements in virtual assistant
intuitiveness, contributing to the evolution of human-computer interactions. Further research includes applying our
versatile database execution approach across diverse platforms and operating systems, as well as exploring innovative
prompt engineering techniques to fine-tune LLMs for various reasoning tasks.
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